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Abstract

In longitudinal studies, if the time-dependent covariates are affected by the past treatment, time-dependent confounding

may be present. For a time-to-event response, marginal structural Cox models are frequently used to deal with such

confounding. To avoid some of the problems of fitting marginal structural Cox model, the sequential Cox approach has

been suggested as an alternative. Although the estimation mechanisms are different, both approaches claim to estimate

the causal effect of treatment by appropriately adjusting for time-dependent confounding. We carry out simulation

studies to assess the suitability of the sequential Cox approach for analyzing time-to-event data in the presence of a

time-dependent covariate that may or may not be a time-dependent confounder. Results from these simulations revealed

that the sequential Cox approach is not as effective as marginal structural Cox model in addressing the time-dependent

confounding. The sequential Cox approach was also found to be inadequate in the presence of a time-dependent

covariate. We propose a modified version of the sequential Cox approach that correctly estimates the treatment

effect in both of the above scenarios. All approaches are applied to investigate the impact of beta-interferon

treatment in delaying disability progression in the British Columbia Multiple Sclerosis cohort (1995–2008).

Keywords

Bias (epidemiology), causality, confounding factors (epidemiology), epidemiologic methods, inverse probability weighting,

longitudinal studies, models, survival analysis

1 Introduction

Longitudinal studies can include regular measurements of clinical symptoms and disease activity as covariates, and
it is natural that the values may change over time. Since the predictive ability of baseline covariates may decrease
over the follow-up time, consideration of the full history of these time-dependent covariates, rather than just the
baseline covariates would be preferable.1 However, if these covariates are affected by previous treatment and
predicts the future treatment decision and future outcome conditional on the past treatment exposure, then such
covariates are popularly known as ‘‘time-dependent confounders.’’2,3 If the causal effect of treatment is of interest,
the estimated hazard ratio may be biased whether or not the time-dependent confounders are included as
covariates in a time-dependent Cox model analysis.2,4 In the presence of time-dependent confounding, marginal
structural Cox models (MSCM) are frequently used to estimate the causal effect of a time-dependent treatment
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exposure.5,6 Sometimes MSCM estimates are unstable due to use of variable inverse probability of treatment
weights (IPTW).7–9 The sequential Cox approach has been proposed as an alternative to the MSCM approach.9

In a previous simulation study, we showed that a simplified implementation of the sequential Cox approach
(considering only baseline covariate adjustment) performed well compared to a Cox proportional hazards model
fit with time-dependent exposure while adjusting for baseline confounders.10 To the best of our knowledge, no
attempt has been made to explore the appropriateness of the sequential Cox approach in adjusting for the effect of
time-dependent confounding in a simulation setting.

To overcome the limitations of this approach revealed by our simulations, we also propose a modified version
of the sequential Cox approach in this paper. The primary focus of this paper is to assess the performance of these
sequential Cox approaches for dealing with a time-dependent confounder. A secondary aim of this paper is to
examine how these methods perform in the presence of a time-dependent covariate which does not interact with
the past treatment condition (i.e. is not a ‘‘time-dependent confounder’’). To do this, we simulate survival data
with time-dependent treatment exposure. Two different conditions are considered for simulation: (1) a time-
dependent confounder is present, and (2) a time-dependent covariate is present along with a baseline covariate.
To assess their suitability in an application, we apply these methods to investigate the impact of time-varying beta-
interferon treatment in delaying disability progression in subjects from the British Columbia (BC) Multiple
Sclerosis (MS) database (1995–2008).11,12

The remainder of the paper is organized as follows. In the next section, we describe the notation and design of
the simulation study, the methods used to address time-dependent confounding, and the metrics used to evaluate
their performances. Then we summarize the simulation and the MS data analysis results. The paper concludes with
a discussion of the results, and the implications and limitations of the current study.

2 Methods

2.1 Notation

Consider a hypothetical longitudinal study consisting of n subjects (i ¼ 1, 2, . . . , n). Let t0¼ 0 be the start of follow-
up or the time of the baseline clinic visit. Baseline covariates L0 (binary or continuous) are recorded at baseline.
Follow-up continues until the time of failure T or the time of censoring TC. Let that ½tm, tmþ1Þ constitutes the mth
interval (say, mth month in the follow-up). At intervals m ¼ 0, 1, 2, . . . ,K, regular measurements of the binary
treatment status Am (¼ 1 for treated and 0 otherwise) are recorded. Let Cm be the binary indicator of censoring (¼
1 if censored due to dropout or artificial censoring and 0 otherwise). Let �am ¼ ða0, a1, . . . , amÞ be the observed
realizations of the treatment history �Am up to interval m, and similarly, let �lm and �cm be the observed realizations of
the covariate history �Lm and the censoring history �Cm up to interval m, respectively. The binary indicator of failure
by time tmþ1 is defined as Ymþ1 ¼ IðT � tmþ1Þ. As the sequential Cox approach does not allow for treatment
discontinuation, we assume that the subjects may initiate treatment at most once and that they continue on the
treatment thereafter until the end of their follow-up. Let treatment initiation occur at time TA.

2.2 Analysis approaches

Brief characteristics of the analysis approaches are shown in Table 1. We describe these methods in detail in the
following sections using the notation defined above.

2.2.1 Cox model with time-dependent treatment and covariates

In the presence of baseline confounders L0 and time-dependent covariates Lm, one way to express the hazard
function through the time-dependent Cox model is as follows

�ðmjL0,LmÞ ¼ �0ðmÞ expð ~ 1Am þ  2L0 þ  3LmÞ ð1Þ

where m is the visit index, �0(m) is the unspecified baseline hazard function, ~ 1 is the log-hazard ratio (log-HR) of
the time-dependent treatment status (Am), and  2 and  3 are the vectors of log-HRs for the baseline covariates L0

and the time-dependent covariates Lm, respectively.

2.2.2 MSCMs

If the time-dependent covariate Lm is influenced by past exposure, i.e. if Lm is a time-dependent confounder,
playing a dual role as a confounder and an intermediate variable in the causal pathway between treatment and
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outcome, then  1 as estimated from equation (1) may be biased2 (i.e. may deviate from the target parameter  1;
discussed in detail in Web Appendix §A). Instead of using Lm as a covariate, the MSCM approach uses it to
calculate IPTW that are person-time-specific measures of the degree to which Lm confounds the treatment
selection process.

Stabilized inverse probability of treatment and censoring (IPTC) weight, swm, can be obtained by multiplying
stabilized IPTW, swT

m, by stabilized inverse probability of censoring weights (IPCW), swC
m,

5 where

swT
m ¼

Ym
j¼0

prðAj ¼ aj j �Aj�1 ¼ �aj�1,L0 ¼ l0Þ

prðAj ¼ aj j �Aj�1 ¼ �aj�1,L0 ¼ l0, �Lj ¼ �lj Þ
ð2Þ

and

swC
m ¼

Ym
j¼0

prðCj ¼ 0j �Cj�1 ¼ 0, �Aj�1 ¼ �aj�1,L0 ¼ l0Þ

prðCj ¼ 0j �Cj�1 ¼ 0, �Aj�1 ¼ �aj�1,L0 ¼ l0, �Lj�1 ¼ �lj�1Þ
ð3Þ

The weights swm are used in the time-dependent Cox model with hazard function modeled as follows to weight
the contribution of each person-time observation so that the confounding due to Lm is removed

�ðmjL0Þ ¼ �0ðmÞ expð 1Am þ  2L0Þ ð4Þ

where  1 is log-HR of the time-dependent treatment status (Am). Note that IPCW is used only if nonrandom
censoring is present. When the numerators in equations (2) and (3) are replaced by 1, these become the unstabilized
IPTC weights, wm. We used pooled logistic regression2,5 to estimate the IPTC weights. Estimation procedure
details are included in Web Appendix §B.

2.2.3 Sequential Cox approach

Suppose that at least one subject initiates treatment in the mth interval ½tm, tmþ1Þ. We want to mimic a randomized
clinical trial for each such interval. The mini-trial corresponding to the mth interval (hereafter referred to as the
mth mini-trial) involves only subjects who have not previously received any treatment. Among the subjects at-risk
at tm the subjects initiating treatment during the interval (tm 5TA � tmþ1) are considered as the treated group,
while the remaining subjects are considered as the control group. These control subjects are artificially censored at
their times of later treatment initiation (TA 4 tmþ1) to avoid confounding due to treatment. As these subjects are
artificially censored, the analysis must be adjusted using IPCW.

In the analysis, we adjust for the baseline confounders L0 measured at inclusion or baseline, the time-dependent
covariates Lm measured at the start of the interval when patient started the treatment and the lagged covariates
Lm–1 consisting of the lagged value measured at the previous interval of the treatment start. Adjustment of these
covariate values should help to reduce bias in the estimation of the treatment effect from the mth mini-trial data.9

Table 1. Description of the Cox models used in the approaches under consideration.

Approach Stratified Time-dependent covariate history Weight adjusted

TD-Cox No Full No

MSCM No Full Yes, IPTCa

Sequential Coxb Yes Up to the new baselinec Yes, IPCd

Modified sequential Coxb Yes New baseline and afterwardse Yes, IPCd

IPC: inverse probability of censoring; IPT: inverse probability of treatment; IPTC: inverse probability of treatment and censoring; MSCM: marginal

structural Cox model; TD-Cox: Cox model with time-dependent exposure.
aPooled logistic regression is used to estimate the IPTC weights.
bRobust (sandwich) estimate is used to obtain SEs.
cFor the sequential Cox approach, covariate values are collected at three time points for each mini-trial: at baseline, at the interval of treatment start,

and at the previous interval (the lagged value): ~Lm ¼ ðL0,Lm�1,LmÞ. Here, time-fixed covariates collected at the original baseline (i.e. L0) are included in

the analysis.
dAalen’s additive regression model is used to estimate the IPCW.
eFor the modified sequential Cox approach, the time-dependent covariate values are collected at the new baseline and then at subsequent intervals (i.e.
~Lm ¼ (Lm, Lmþ1,. . ., LK)). Time-fixed covariates collected at the original baseline (i.e. L0) are also included in the analysis.
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Let us denote ~Lm ¼ ðL0,Lm�1,LmÞ. Here, L0 includes the covariate values measured at baseline (i.e. time-static
baseline covariates as well as the time-varying covariate or confounder value at time point m¼ 0).

We assume that the different mini-trials may have different baseline hazard functions but all subjects in the same
mini-trial have the same baseline hazard function. Under this assumption, use of a stratified Cox model is
appropriate. Therefore, one way to model the hazard function for the mth mini-trial is9

�mð j jL0, �Lj Þ ¼ �0mð j Þ expð 
00
1Aj þ  

00
2

~LmÞ; j � m ð5Þ

where �0m(j) is the unspecified baseline hazard function for stratum m,  001 is log-HR of the time-
dependent treatment status, and  002 is the vector of log-HRs for the time-dependent covariates ~Lm. This
hazard function should be weighted by IPCW (equation (3)). It was suggested that the resulting estimate
should bear a causal interpretation under the assumptions of no unmeasured confounders and correct model
specification for the hazard ratio and the censoring weights.9 We used Aalen’s additive regression model9,13 to
estimate the IPCW.

We can fit a stratified Cox model to the combined data of all mini-trials (pseudo-data), stratified by the
treatment initiation time. Inclusion of the same subject more than once invalidates the SE obtained from the
stratified weighted Cox analysis. Computationally demanding resampling methods are suggested9,13 to obtain a
correct SE. We used a robust (sandwich) estimate instead to save computational time similar to other simulation
studies.14,15 An illustrative data construction example is provided in Web Appendix §C and the corresponding
software implementation details are provided in Web Appendix §D.

2.2.4 Modified sequential Cox approach

As each of the mini-trials mimics a clinical trial, we propose to analyze the mini-trial data accordingly. Each mini-
trial is created based on a particular month of treatment initiation. These treatment initiation months are
considered as the new baselines (new time-0) for the corresponding mini-trials. Note that the time-fixed
covariates measured at the original baseline (i.e. L0) are included in the analysis. For covariates that vary over
time, we consider all the information from the new baseline to the study endpoint to analyze the data, as we would
do in a clinical trial setting. For example, time-varying covariate or confounder values collected at the interval of
treatment start and onward (i.e. ~Lm ¼ (Lm, Lmþ1,. . ., LK) for the mth mini-trial) are included in the model for
adjustment.16 Unlike the original proposal,9 we do not use any time-dependent confounder (or time-dependent
covariate) values prior to the new baseline for adjustment. Therefore, the hazard function for the mth mini-trial
can be expressed as

�mð j jL0, �Lj Þ ¼ �0mð j Þ expð 
0
1Aj þ  

0
2
~LmÞ; j � m ð6Þ

where  01 is log-HR of the time-dependent treatment status and  02 is the vector of log-HRs for the time-dependent
covariates ~Lm. However, the process of creating the pseudo-population remains the same. The proposed changes
occur only in the analysis stage. Theoretically proving the equivalence of the target parameters  01 from equation
(6) and  1 from equation (4) is not easy, but we have provided a heuristic justification of such equivalence later
based on a Monte Carlo experiment. In some context, additional techniques, such as matching17,18 or use of
propensity scores19 or adherence adjustments,16 may be useful to make the subjects within a mini-trial more
comparable, but those approaches are not considered here.

2.3 Design of simulation

We adopt the data generation process of Young et al.20 to simulate survival times where time-dependent
confounding is present. To simulate survival times with time-dependent covariates (none of which are time-
dependent confounders), we adapt the permutation algorithm.21 Descriptions of these algorithms are presented
in Web Appendices §E and §F, respectively.

2.4 Simulation specifications

In our Monte Carlo study, we generated N¼ 1000 datasets with n¼ 2500 subjects, each followed for up to m¼ 10
subsequent monthly visits for each setting under consideration. We set �0¼ 0.01 (on a monthly scale) to represent
a rare disease condition and �0¼ 0.10 (on a monthly scale) for a more frequent disease condition. We discuss a
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brief description of the two simulations under consideration in Table 2. Below we provide the detailed
specifications of the simulation scenarios.

2.4.1 Simulation I

In our implementation of the algorithm,20 counterfactual failure time Ti�0 s are sampled from an exponential
distribution, with constant �0 rate of monthly events throughout the follow-up. The binary time-dependent
confounder, Lm, is modeled by the following covariates: a binary covariate IðT�0 � cÞ, previous treatment status
Am–1, and the lagged variable Lm–1

logitð pLÞ ¼ logit PrðLm ¼ 1jAm�1,Lm�1,Ym ¼ 0; bÞ

¼ �0 þ �1IðT�0 5 cÞ þ �2Am�1 þ �3Lm�1

ð7Þ

with associated parameters b¼ ð�0,�1,�2,�3Þ ¼ ðlogð3=7Þ, 2, logð1=2Þ, logð3=2ÞÞ, c¼ 30, and Ym ¼ IðT � tmÞ.
Here, the time-dependent covariate Lm is moderately affected by prior treatment Am–1 (�2 ¼ logð1=2Þ ¼ �0:3).

We model binary treatment status at each stage Am with the factors current symptom Lm, past symptom Lm–1,
and previous treatment status Am–1 as

logitð pAÞ ¼ logit PrðAm ¼ 1jLm,Am�1,Lm�1,Ym ¼ 0; �Þ

¼ �0 þ �1Lm þ �2Lm�1 þ �3Am�1

ð8Þ

with associated parameters �¼ ð�0,�1,�2,�3Þ ¼ ðlogð2=7Þ, 1/2, 1/2, 10). Current treatment status Am is made
heavily dependent on the previous treatment status Am–1 by setting a high parameter value (�3¼ 10). That way, we
emulate the situation where subjects switch to treatment at most once and keep on using the treatment without
much interruption or discontinuation. The true causal effect parameter (i.e. treatment effect) is set to be  1 ¼ 0:5
(in equation (4)).

Equations (7) and (8) define Lm as a time-dependent confounder affected by prior treatment.2 In particular, past
treatment exposure status Am–1 affects the time-dependent confounder Lm, which then predicts future treatment
exposure Am. Lm is also associated with the future failure status Ymþ1 via IðT0 � cÞ. Here, T0 is the untreated
counterfactual survival time and c is an arbitrary cut point used to generate the binary variable IðT0 � cÞ. The
value of c affects the degree of variability in the indicator variable IðT0 � cÞ.22 Without IðT0 � cÞ, there would not
be any confounding in the exposure–outcome relationship. The confounding here arises via the path:
Ymþ1 IðT0 � cÞ ! Lm! Am. This indicator variable IðT0 � cÞ therefore dictates the degree to which T0

affects Lm for a chosen value of c.

2.4.2 Simulation II

We assume an exponential distribution for generating failure times T with constant �0¼ 0.01 rate of monthly
events throughout the follow-up. A uniform distribution U(1, 60) months is assumed to generate censoring times
TC, i.e. administrative censoring is set at five years of follow-up. Treatment initiation time TA is generated from a
uniform distribution U(0, 10) (in months). Additionally, we consider sex as a baseline confounder in these data. A
subject’s sex is generated based on a Bernoulli distribution where the probability of being male is 0.3. We also add
one time-dependent confounder Lm, which could represent cumulative disease activity, for example, such that
higher cumulative disease activity has a higher risk (a log-HR of  3 ¼ logð1:5Þ). This time-dependent confounder
Lm is generated based on a Bernoulli distribution where the probability of disease activity increment is 0.75,
accumulating the disease activity over at most m¼ 10 periods of time.

Table 2. Two simulation settings under consideration.

Simulation I Simulation II

Algorithm Young et al.20 Abrahamowicz et al.21

Time-varying treatment Yes Yes

Baseline covariate No Yes

Time-varying covariate No Yes

Time-varying confounder Yes No

Karim et al. 5



The permutation algorithm21 is used to generate survival data where binary treatment Am is time dependent but
the confounder L0 is fixed at its baseline value. Arbitrarily, the effect parameters for treatment and sex on the
survival outcome are set such that the treatment has a harmful effect (a log-HR of  1¼ 0.5) and males are at a
lower risk than females (a log-HR of  2¼ –0.7).

2.5 Performance metrics

We assessed the performance of the various approaches by the following measures:

. Bias ¼
PN

i¼1 ð ̂1i �  1Þ=N: The average difference between the true and N¼ 1000 estimated parameters (log-
HR);

. SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ð ̂1i � � 1Þ

2=ðN� 1Þ

q
where � 1 ¼

PN
i¼1  ̂1i=N;

. Model-based SE: The average of N¼ 1000 estimated standard errors of the estimated causal effect;

. Coverage probabilities of model-based nominal 95% CIs: Proportion of N¼ 1000 datasets in which the true
parameter is contained in the nominal 95% CI.

The above quantities were defined in terms of MSCM parameter  1 from equation (4). In order to define the
same measures from other analysis approaches under consideration, we assumed that the true target parameters
(defined in equations (1), (4), and (6), respectively) are the same for all approaches, e.g. ~ 1 ¼  1 ¼  

0
1 ¼ 0:5.

A heuristic justification of such assumption of equivalence is provided in Section 3.3.

3 Simulation results

3.1 Description of the simulated data

To describe the data obtained from the simulation settings under the rare event condition, we generated datasets
with a larger number of subjects (25,000) with up to 10 subsequent visits from each simulation algorithm. The
characteristics of the treated, untreated, and partially treated groups; their failure rates; and average number of
visits are listed in Table 3.

3.2 Rare event condition

We present the results from the rare event condition ð�0 ¼ 0:01 in a monthly timescale) in the two simulation
settings.

3.2.1 Results from simulation I

Results from simulation I are reported in Table 4. MSCM with treatment status (Am) is fitted to validate the data-
generating algorithm. The corresponding stabilized weights are generated based on the relationship between
treatment status (Am) and the time-dependent confounder Lm. The level of bias is negligible compared to other
approaches under consideration and the average coverage probability of the model-based nominal 95% CIs is
0.942. These results are now considered as the ideal for comparison purposes for this simulation setting. The time-
dependent Cox models provide biased estimates (assuming ~ 1 ¼  1 ¼ 0:5) in the presence of this time-dependent
confounder. The average coverage probability of the model-based nominal 95% CIs for the method is very low.

Table 3. Characteristics of the simulation settings under consideration.

Rates Simulation I Simulation II

Failure 0.143 0.084

Always treated 0.261 0.051

Never treated 0.046 0.150

Partially treated 0.692 0.799

Discontinuation 0.001a –

Mean visits 9.367 8.943

aSimulation I allows a few exceptions (19 out of 25,000) where there are discontinuations. However, the

proportion of discontinuation in the simulation I dataset is negligible (0.00076) and we do not expect any

noticeable impact in the results due to this small number of exceptions.
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The bias of sequential Cox analysis is comparable to that with the time-dependent Cox analysis, while the
corresponding effect estimates are considerably more variable. The properties of the modified sequential Cox
approach, on the other hand, are comparable to that of MSCM. The corresponding average coverage
probability of the model-based nominal 95% CIs for the method is comparable to that with MSCM.

3.2.2 Results from simulation II

Results from simulation II are reported in Table 5. The time-dependent Cox model with treatment status (Am),
baseline covariate (L0), and time-dependent covariate (Lm) is fitted to validate the data-generating permutation
algorithm. The level of bias is negligible and the average coverage probability of the model-based nominal 95%
CIs is 0.952. These results are considered as the ideal for comparison purposes for this simulation setting. When
the sequential Cox approach is used in this simulation setting, we observe some bias. We apply MSCM with Lm

treated as a time-dependent confounder, even though Lm is only a time-dependent covariate that is not affected by
the past treatment. The corresponding bias is negligible and the average coverage probability of the model-based
nominal 95% CIs is 0.952. As Lm is not a time-dependent confounder in this simulation, the similarity between the
estimates obtained from MSCM and the time-dependent Cox model is not surprising. The properties of the
modified sequential Cox approach are again comparable to MSCM with reasonable average coverage
probability of the model-based nominal 95% CIs.

3.3 Marginal versus conditional interpretations

We need to take into account the different interpretations of the target quantities ( ~ 1,  1, and  
0
1 from equations

(1), (4), and (6), respectively) being estimated by the three approaches under consideration. The clinical context
should dictate whether the target parameter should bear a marginal or conditional interpretation. Conditional
interpretations are generally useful in deciding personalized drug choices, whereas marginal interpretations may be
more useful in making generalized policy decisions for a heterogeneous group of patients.15

The modified sequential Cox approach and its proposed modification emulate a sequence of conditionally
randomized treatment assignments. This is done by first reorganizing the observed data and then stratifying the
combined data based on the month of treatment initiation, conditioning on the pretreatment covariate values. The
estimated  01 from a modified sequential Cox approach (as well as estimated  001 from a sequential Cox approach),
therefore, bears a conditional interpretation,9,13 as does the estimated log-hazard ratio ~ 1 from a time-dependent
Cox model.23,24

In contrast, MSCM estimates the log-hazard ratio  1 between two counterfactual scenarios: all subjects are
treated at a given time versus none of the same subjects are treated at that time. The target quantity of interest  1

estimated from MSCM is the causal effect of the treatment. Assuming the MSCM assumptions hold, this quantity

Table 4. Comparison of the analytical approaches to adjust for time-dependent confounding from simulation I (one time-dependent

confounder and time-dependent treatment exposure) of 1000 datasets, each containing 2500 subjects followed for up to 10 time

intervals.

Approach Bias SD se Coverage probability

TD-Coxa 0.438 0.168 0.169 0.251

Sequential Coxb,c 0.451 0.280 0.267 0.636

Modified Sequential Coxd,e 0.015 0.221 0.222 0.956

MSCMf 0.029 0.201 0.205 0.942

MSCM: marginal structural Cox model; TD-Cox: Cox model with time-dependent exposure.
aIncludes the time-dependent confounder Lm as a covariate. In the presence of a time-dependent confounder, the time-dependent Cox model is not

appropriate but the results are retained for comparison purposes.
bAdjusts for ~Lm.
cFor the stabilized IPCWs, the numerator model adjusts for Am, while the denominator model adjusts for Am and ~Lm via Aalen’s additive regression.
dAdjusts for lagged values of Am, the time-dependent confounder ~Lm, and lagged values of ~Lm . Note that, baseline covariates are not present in this

setting.
eFor the stabilized IPCWs, the numerator model adjusts for Am, while the denominator model adjusts for Am, ~Lm, and lagged values of ~Lm via Aalen’s

additive regression.
fThe stabilized IPTW numerator model adjusts for time index and lagged values of Am, while the denominator model additionally adjusts for current and

lagged values of Lm to predict future treatment status via pooled logistic models.
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should match the estimated treatment effect from a randomized clinical trial.25,26 In that sense, the MSCM
approach mimics randomized clinical trial data setting by appropriately weighting observational data. As the
corresponding outcome or hazard model does not condition on any time-dependent covariates that affect future
treatment, the log-hazard ratio estimated from a MSCM is a marginal or population-averaged quantity.27 It is
possible to extend the MSCM by incorporating baseline covariates in the hazard model.28 When we use stabilized
weights in a MSCM, the treatment effect is marginal with respect to the time-dependent confounders, but
conditional with respect to the baseline covariates.11,29,30

Comparing the MSCM target parameter estimate with any conditional treatment effect estimate (from time-
dependent Cox model approach: which is considered as the standard for comparison in simulation II) is not
straightforward when noncollapsible measures, such as hazard ratio (HR) or odds ratio (OR), are employed.30–34

Establishing the equivalence of the target parameters (log-hazard ratios ~ 1,  1, and  
0
1 from equations (1), (4), and

(6), respectively) from the approaches under consideration may not be easy. However, the difference between the
conditional and marginal parameters is expected to be negligible when the event rate in the time intervals under
consideration is small.14,33 In our simulations, the event rate was 1% in each month interval. In this scenario,
noncollapsibility of the HRs should not have any noticeable impact on the findings. We performed the following
numerical experiment to support this proposition.14,15 We generated a very large cohort (n¼ 100,000) under the
simulation II settings. As expected, the time-dependent Cox model and MSCM yield almost identical values of the
treatment effect estimates (log-hazard ratio of ~̂ 1 ¼ 0:5084 versus  ̂1 ¼ 0:5091). This further provides some
evidence that noncollapsibility of the HR does not affect our simulation II findings.

Similarly, we performed another Monte Carlo experiment for the simulation I setting with N¼ 100 larger
cohorts (n¼ 100,000) to investigate whether  01 and  1 quantities estimated via the modified sequential Cox
and MSCM, respectively (which is considered as the standard for comparison in simulation I) differed
systematically in the settings we investigated. Both approaches produce very similar values of the treatment
effect estimates on average (see Table 6). For this setting, this shows that the target parameters for these two
approaches are not materially different. To check the adequacy of the sample size n¼ 2500 chosen in our original

Table 5. Comparison of the analytical approaches to adjust for time-dependent covariate from simulation II (one baseline covariate,

one time-dependent covariate, and time-dependent treatment exposure) of 1000 datasets, each containing 2500 subjects followed for

up to 10 time intervals.

Approach Bias SD se Coverage probability

TD-Coxa 0.000 0.164 0.162 0.952

Sequential Coxb,c 0.271 0.189 0.184 0.688

Modified Sequential Coxd,e
�0.022 0.231 0.234 0.961

MSCMf,g
�0.001 0.163 0.162 0.952

MSCM: marginal structural Cox model; TD-Cox: Cox model with time-dependent exposure.
aThe baseline covariate L0 and time-dependent covariate Lm are included.
bAdjusts for L0 and ~Lm .
cIn the stabilized IPCW model, the numerator model adjusts for Am and L0, while the denominator model adjusts for Am, L0, and ~Lm via Aalen’s additive

model.
dAdjusts for baseline covariates L0, lagged values of Am, the time-dependent confounder ~Lm, and lagged values of ~Lm.
eFor the stabilized IPCWs, the numerator model adjusts for Am and baseline variable L0, while the denominator model adjusts for L0, Am, ~Lm, and lagged

values of ~Lm via Aalen’s additive regression.
fAdjusts for only L0.
gFor the stabilized IPTWs, the numerator model adjusts for the time index, L0, and lagged values of Am, while the denominator model additionally

adjusts for current and lagged values of Lm to predict future treatment status via pooled logistic models.

Table 6. Series of Monte Carlo studies for the simulation I setting, each simulation with larger cohorts.

Approach
Bias (SD) from N¼ 100 cohorts

Cohort size (n) n¼ 5000 n¼ 10,000 n¼ 50,000 n¼ 100,000

MSCM 0.013 (0.150) 0.007 (0.107) 0.011 (0.049) 0.003 (0.033)

Modified sequential Cox 0.011 (0.157) 0.003 (0.100) 0.004 (0.048) -0.001 (0.037)

MSCM: marginal structural Cox model.
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simulation I, this study is also repeated for other cohort sizes n¼ 5000, 10,000, and 50,000 (see Table 6). The
results look very similar, and expectedly the SDs are decreasing with increment of sample sizes.

3.4 When more events are available

The trends in the bias from the more frequent event condition ð�0 ¼ 0:1 in a monthly timescale) are similar
compared to those in the rare event condition (see Web Tables H.1 and H.2). As expected, the standard errors
are much less than in the corresponding analyses when failure rates are rare. Bias is slightly lower in some cases.
One noticeable difference is observed in simulation setting I: in the presence of the time-dependent confounder,
when the failure rate is more frequent, the bias of the time-dependent Cox and MSCM approaches is reduced to
minimal levels, whereas considerable bias is still apparent with the sequential Cox approach. On the other hand,
the average coverage probability of the model-based nominal 95% CIs from the time-dependent Cox approach is
smaller than that of MSCM. The modified sequential Cox approach estimates are still associated with good
statistical properties.

4 Application in MS

We apply these methodologies to the BC MS cohort data (1995–2008).11 The dataset was used in previous
studies11,12,35–38 to estimate the effect of �-IFN on time to irreversible disability outcomes. As before,
irreversible progression of disability is measured by sustained expanded disability status scale (EDSS) 6 which
is confirmed after at least 150 days, with all subsequent EDSS scores being 6 or greater. Web Appendix §G
describes the baseline characteristics, eligibility, and exclusion criteria of the MS cohort.

Potential baseline confounders L0 include age, sex, disease duration, and EDSS score. Also, we consider
the cumulative number of relapses in the previous two years (hereafter called ‘‘cumulative relapses’’) as a time-
dependent confounder Lm.

11 Once the subjects initiate �-IFN, we assume they continue taking the drug without
any discontinuation until they develop the outcome or are censored, as is assumed in our simulations and previous
pharmacoepidemiologic studies.9,13,39 As found in the previous study11 using this cohort, we consider the MSCM
estimates to be ideal in this time-dependent confounding context. Results are reported in Table 7.

The IPCWs in the modified sequential Cox approach are less variable than the IPWs in MSCM. IPCWs are
estimated separately for each mini-trial.9 When they are estimated from the aggregated dataset instead,8 or when
IPCWs were estimated via pooled logistic regression models,2,5,39 the HR estimates are very similar (see Web
Appendix §I). No matter how they are constructed, the IPCWs from the mini-trials are well behaved, i.e. the

Table 7. Summary of the estimated parameters from the multiple sclerosis (MS) patients’ data from British Columbia, Canada (1995–

2008).

Weights

Approach cHR seðcHRÞ 95% CI Average (SD) Range

TD-Coxa 1.29 0.23 0.91–1.82

Sequential Coxb,c 1.23 0.32 0.74–2.07 1.00 (0.01) 0.74–1.63

Modified sequential Coxd,e 1.36 0.26 0.93–1.99 1.00 (0.01) 0.92–1.24

MSCMf,g 1.31 0.23 0.92–1.84 1.00 (0.06) 0.37–1.60

MSCM: marginal structural Cox model; TD-Cox: Cox model with time-dependent exposure.
aAdjusts for baseline covariates L0 (sex, EDSS score, age, and disease duration), and for the time-dependent confounder Lm ‘‘cumulative relapses.’’
bAdjusts for L0, Am, and ~Lm.
cThe stabilized IPCW numerator model adjusts for Am and L0, while the denominator model additionally adjusts for Lm and lagged values of Lm via

Aalen’s additive model.
dAdjusts for baseline covariates L0, lagged values of Am, the time-dependent confounder ~Lm, and lagged values of ~Lm.
eFor the stabilized IPCWs, the numerator model adjusts for Am and baseline variable L0, while the denominator model adjusts for L0, Am, ~Lm , and lagged

values of ~Lm via Aalen’s additive regression.
fAdjusts for the potential baseline confounders L0.
gThe stabilized IPTW numerator model adjusts for a restricted cubic spline of the follow-up time index, baseline confounders L0, and lagged values of

Am to predict future treatment status. The denominator model additionally adjusts for the current and lagged values of cumulative relapses (Lm) via the

pooled logistic models.
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averages are close to one and they have low variability (most are within the range of 0.9–1.1 and the distributions
are unimodal and symmetric; see Web-Figures I.1 and I.2).

5 Discussion

In observational studies, the estimation of a treatment effect is challenging in the absence of randomization. In
longitudinal studies, additional complexity arises in the presence of time-dependent confounding. MSCMs are
popularly used to deal with this problem in the survival analysis setting. MSCMs handle time-dependent
confounding by reweighting the data in such a way that the confounding effect of the time-dependent
confounder is removed. Then adjusting for the baseline confounders (but not the time-dependent confounder)
in the reweighted pseudo-population is adequate to obtain the counterfactual or causal effect of the treatment
under the identifiability conditions.8,28 Sometimes, the MSCM estimates may be unstable due to use of IPTWs and
an alternate analysis or view of the data may be helpful.

The sequential Cox approach was proposed as an alternative method to the MSCMs for estimation of the
treatment effect from complex observational data settings where the treatment is timedependent and censoring
may be nonrandom.9 This approach restructures the data in such a way that a sequence of subsets of data (mini-
trials) are created based on intervals of treatment initiation. Aggregation of all the mini-trial data produces the
pseudo-population. In this pseudo-population, subjects initiating treatment at each interval are compared to those
who do not initiate treatment, conditional on covariates at respective intervals as well as baseline covariates.
Although IPTWs are avoided in the sequential Cox approach, IPCWs are still required. These weights are less
variable and more stable than IPTWs7,9 and appropriately handle the artificial censoring at later treatment start
dates. We proposed a modified version of this approach that deal with analyses differently than the original
proposal.

The treatment effect that is estimated from a MSCM is a marginal estimate as it is obtained by averaging over
subjects with different hazards. This estimate does not condition on the time-dependent confounder. Rather the
time-dependent confounder plays a role in creating weights for the MSCMmodel fitting. These weights are used to
create the pseudo-data which are free from time-dependent confounding and mimic a clinical trial situation.
Similarly, the sequential Cox approach contrasts subjects within mini-trials, where each mini-trial includes
subjects who did and did not initiate the treatment. Controlling for current values of the time-dependent
covariates as well as baseline confounders should make the treated subjects conditionally exchangeable with
control subjects at the time of treatment initiation. Within each mini-trial, treatment assignment could be
considered as random among the comparable subjects.

While the MSCM approach provides a marginal estimate of the treatment effect, the sequential Cox approach
and its modified version provide conditional estimates. Both approaches are equipped to adjust for baseline
confounders. Although the mechanisms and interpretations behind the sequential Cox approach and MSCM
are different, both claim to achieve the same goal of estimating the causal effect of treatment in the presence of
time-dependent confounders. Generally marginal and conditional estimates may not be directly comparable due to
noncollapsibility.9,15 By examining whether these quantities differed systematically in the settings investigated, we
showed that the use of noncollapsible measure has not been an issue in the specific simulation settings we
considered.

To the best of our knowledge, ours is the first study to use simulation studies to investigate the characteristics of
a sequential Cox approach that has been suggested as being suitable in the context of time-dependent confounding.
The first simulation setting (simulationI) deals with the situation where the time-dependent covariate is affected by
the prior treatment (i.e. is a time-dependent confounder). When a time-dependent confounder is present, MSCM is
known to be an appropriate method and hence results from this method are used as the standard for comparison
in this simulation setting. In this simulation process, we generate data such that the time-dependent confounder
dictates the treatment assignment in the following periods. Among the subjects selected for a mini-trial based on
those initiating treatment or at risk in a given period, only current (and lagged) values of the time-dependent
covariates are used as adjustments in the sequential Cox approach. We proposed a modified version of sequential
Cox approach, based on controlling for the time-dependent variable (confounder or covariate) values after the
treatment initiation. We investigated via simulation whether such adjustments are sufficient. In the second setting
(simulation II), we have a baseline covariate and a time-dependent covariate. As the time-dependent Cox model is
appropriate for simulation setting II, we use these results as the standard for comparison.

Previously, the sequential Cox approach was shown to work very well in comparison to the time-dependent Cox
approach in the absence of any time-varying covariate or confounder.10 However, we do not find the sequential
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Cox approach to be as effective as MSCM when a time-dependent confounder is present (simulation I) or even
when a time-dependent covariate which is not a time-dependent confounder is present (simulation II). The
sequential Cox approach does not seem to remove the effects of time-dependent confounding adequately,
especially when the event rate is small. Based on our simulation findings, when we need to consider time-
dependent confounders in order to adequately model a disease process, we recommend the use of the MSCM
approach or the modified sequential Cox approach, as both are capable of producing estimates of the treatment
effect that are close to the MSCM target parameter  1.

We apply the methods under consideration to estimate the effect of �-IFN on disease progression. The modified
sequential Cox approach produces effect estimate similar to MSCM. A sensitivity analysis of the sequential Cox
approach without using IPC weights yielded very similar results, implying little impact of artificial censoring due to
later treatment initiation.

The focus for the sequential Cox approach and its modified version is on recreating the covariate process at
each treatment start using the mini-trial approach.7 Such focused and detailed scrutiny could yield insights about
the data which may be hard to extract using a MSCM approach. For example, the data associated with a given
mini-trial can be extracted and separated quite easily from the combined mini-trial data (pseudo-population), it is
straightforward to compare the effects of early versus late treatment initiation. It is also possible to estimate the
treatment effect for patients with a specific level of a time-dependent covariate at treatment initiation. Variance
estimation is a challenge in the sequential Cox and similar methods.15 To account for possible multiple entry of the
same control subjects in different mini-trials, we used a robust (sandwich) estimator. In our simulation studies, the
average standard errors are slightly lower than the empirical standard deviations in most cases for the sequential
Cox approach. However, for the modified version, these estimates are very close. For more accurate estimate of
the standard errors, bootstrap or jackknife estimates could be used.9,13 Unlike our simulation settings, if the time-
dependent covariates are very strongly affected by the prior treatment, further adjustments16–19 may be necessary.
Using the same simulation scheme used in this study, future studies could assess the adequacy of the sequential
Cox approaches and other similar methods17,27,40,41 under such extreme setting.

Similar to other simulation studies, we investigated a few possible scenarios. However, the assumptions
underlying our data simulation are consistent with patterns typical in observational survival studies where
associated covariates are measured regularly. For more complex disease scenarios where an investigator may
wish to assess different treatment strategies (i.e. switching between therapies) over the course of time, our
assumption of no discontinuations or interruptions in the treatment is restrictive and may not be suitable.8

Further simulation studies are required to assess the effect on the precision of the estimates when varying the
sample size of the simulated data as well as the number of simulated datasets generated from the algorithms
considered in this study.42 Future research could focus on analytical derivation of the effect estimates from the
sequential Cox approach and its modified version in an effort to theoretically justify the proposed analysis
roadmap.
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λ(m|L0) = λ0(m) exp
(
ψ1Am + ψ2L0

)
, (A.1)

where m is the visit index, λ0(m) is the unspecified baseline hazard function, ψ1 is the log-

HR of the current treatment status (Am) and ψ2 is the vector of log-HRs for the baseline

covariates. Here the impact of treatment is modelled based on only current exposure1.

In presence of a time-dependent confounder Lm, we may want to expand the above Cox

model to:

λ(m|L0, Lm) = λ0(m) exp
(
ψ1Am + ψ2L0 + ψ3Lm

)
,

which may produce a biased estimate of ψ1 if Lm is influenced by past exposure1. Nonethe-

less, as Lm is a confounder, we still need to adjust for confounding due to Lm somehow.

IPWs are person-time specific measures of the degree to which Lm confounds the treatment

selection process. Therefore, in MSCM, IPWs are used in the time-dependent Cox model

formulation (equation (A.1)) to weight the contribution of each person-time observation so

that the confounding due to Lm is removed.

B Model Specifications for Estimating the Weights

The unstabilized IPTW is expressed as:

wTm =
m∏
j=0

1

pr(Aj = aj|Āj−1 = āj−1, L0 = l0, L̄j = l̄j)
, (B.1)

A pooled logistic regression model is used to estimate the probabilities in equation (B.1) as

follows:

logit Pr(Aj = 1|Āj−1, L0, L̄j) = α0(j) + α1Aj−1 + α2L0 + α3Lj. (B.2)

Title: Comparison of Statistical Approaches Dealing with Time-dependent Confounding in Drug 
Effectiveness Studies
Authors: Karim, M. E.; Petkau, J.; Gustafson, P.; Platt, R.W.; Tremlett, H. and BeAMS study group. 
Journal: Statistical Methods in Medical Research. First published online: Sep 21, 2016. 
DOI: 10.1177/0962280216668554

WEB-APPENDIX

A MSCM Model Specification

In the presence of baseline covariates L0, the hazard function can be expressed as the fol-

lowing time-dependent Cox model:



Here, α0(j) is a smooth function1,2 of the month index j, Aj is the current treatment status,

Aj−1 is the treatment status at the previous time interval, L0 is the collection of baseline

covariates, and Lj is the time-varying confounder. The predicted probabilities from equation

(B.2) yield the estimated probability of the subject’s treatment status at time j. Multiplying

the corresponding probabilities as indicated in equation (B.1) yields the probability of the

observed exposure sequence over m time periods of a given subject.

To obtain the stabilized IPTW, we use the following formula:

swTm =
m∏
j=0

pr(Aj = aj|Āj−1 = āj−1, L0 = l0)

pr(Aj = aj|Āj−1 = āj−1, L0 = l0, L̄j = l̄j)
. (B.3)

The numerator terms are estimated from:

logit Pr(Aj = 1|Āj−1, L0) = α′
0(j) + α′

1Aj−1 + α′
2L0. (B.4)

Dividing the estimated numerator probabilities of the subject’s observed treatment status aj

by the corresponding estimated denominator probabilities yields the estimated IPTWs swTm

that account for the confounding due to L̄m.

Using similar logic to that leading to the IPTW for uncensored patients, the stabilized

IPCW can be obtained as3:

swCm =
m∏
j=0

pr(Cj = 0|C̄j−1 = 0, Āj−1 = āj−1, L0 = l0)

pr(Cj = 0|C̄j−1 = 0, Āj−1 = āj−1, L0 = l0, L̄j−1 = l̄j−1)
, (B.5)

where Cj denotes the binary censoring status taking the value of 1 if the patient was censored

in the j-th month and 0 otherwise. The overall stabilized IPTC weights swm are obtained

by multiplying swTm by swCm
4.

C Constructing a Mini-trial in the Sequential Cox Ap-

proach

To illustrate the method, consider Web-Figure C.1, where the follow–up times for 11 subjects

are outlined. Patient 1 was not under treatment when entering the study. This individual

started taking the treatment in the m = 4th month and was censored during the 5th month.

Similarly subject 5, who was never under treatment was censored during the 6th month.



Web-Figure C.1: An illustration of the sequential Cox approach

Now, suppose we want to create the mimicked trial considering the 4th month as the refer-

ence interval. We eliminate the subjects who received treatment before the 4th month, i.e.,

the 3rd, 7th and 11th subjects are discarded. Then for the subjects who started treatment

after the 4th month, we censor them at the time of treatment start i.e., the 6th and 10th

subjects are censored at the 5th and 6th months respectively. Then, under the assumption

that treatment status remains the same for the entire month, subjects 1, 4 and 9 are consid-

ered the treated group and subjects 2, 5, 6, 8 and 10 are considered the control group, for

the mimicked trial starting at the beginning of 4th month.

In this mimicked trial, a subject is considered either on treatment or off treatment during

the entire duration of the follow-up. Therefore, this manipulated subset of the data mimics

a clinical trial. A Cox proportional hazards model can be used to compare the survival

experiences of these two groups. Similarly, we can identify the subjects for the treatment

and control groups in the mimicked trials starting at the beginning of other months. This

yields multiple mimicked trials, one for each of the time intervals (say, months) of treatment

start. The intervals in which no subject initiates treatment do not have a corresponding

mimicked trial.



One way to get a treatment effect estimate is to fit a stratified Cox model on the combined

data of all mini-trials (pseudo-data), stratified by the treatment initiation time. In this pa-

per, we used this approach. Alternatively, a simple Cox model weighted by IPCW can be

run for each of the successive mini-trials to obtain separate estimates of the treatment effect

for each mini-trial, leading to the name of this approach, the sequential Cox approach. An

overall estimate of the treatment effect is obtained by simply averaging the treatment effect

estimates from the separate mini-trials. Convergence may be an issue if some mini-trials

have only a few subjects, which could be the case in mini-trials starting near the end of the

follow-up. This may have an impact on the estimation of IPCW if we are estimating them

separately for each mini-trial.

The overall estimate (from the above two approaches) requires two additional assumptions

for causal interpretation: (1) the treatment effect is the same in all the mini-trials and (2)

the treatment effect is unchanged for all covariate histories before the m-th interval, given

the covariates at the m-th interval. However, if one is willing to interpret the overall effect

estimate as an aggregated (averaged) effect over all the mini-trials, then the first assumption

can be relaxed5,6. Whether the two estimators (using combined pseudo-data or averaging the

results from the separate mini-trials) are estimating the same target parameter may depend

on satisfying the stated assumptions.

D Implementation of the Sequential Cox Approach in

R

The coxph function in the survival package7 is used to fit both time-independent and time-

dependent Cox PH models. The combined mini-trial (pseudo) dataset can become large due

to repeated use of the same control subjects.

In the coxph function, the option strata is set to fit a stratified Cox model for the sequen-

tial Cox approach. Also, the options such as cluster and robust = TRUE are set to obtain

the robust (sandwich) variance estimate. This is an approximate grouped jackknife variance

estimate8 when multiple observations per subject are present. Aalen’s additive regression is

fitted using the aalen function in the timereg package to estimate the IPCWs6. To obtain

bootstrap estimates9, the lapply function can be used on each bootstrap sample to estimate



the corresponding IPCWs and subsequently the HR from a Cox PH.

E MSCM Data Simulation Algorithm Pseudocode

A number of different simulation schemes are available in the literature to simulate survival

times in the presence of a time-dependent confounder10–16. The algorithm we used11,17

generates data satisfying the conditions of the following three models simultaneously: MSM,

structural nested accelerated failure time model and a structural nested cumulative failure

time model. The steps of this algorithm are also described elsewhere11,12,16,18–20.

GET

n← 2500;

K ← 10 (maximum follow-up);

λ0 ← 0.01 (rare events) or 0.10 (frequent events);

β ← [log(3/7), 2, log(1/2), log(3/2)] (parameter vector for generating L);

α← [log(2/7), (1/2), (1/2), 10] (parameter vector for generating A);

ψ1 ← 0.5 (true log-HR value of the treatment effect)

COMPUTE

FOR ID = 1 to n

INIT: L−1 ← 0; A−1 ← 0; Y0 ← 0; Hm ← 0; c← 30

T0̄ ∼ Exponential(λ0)

FOR m = 1 to K

logit pL ← logit Pr(Lm = 1|Lm−1, Am−1, Ym = 0; β)

← β0 + β1I(T0 < c) + β2Am−1 + β3Lm−1

Lm ∼ Bernoulli(pL)

logit pA ← logit Pr(Am = 1|Lm, Lm−1, Am−1, Ym = 0;α)

← α0 + α1Lm + α2Am−1 + α3Lm−1

Am ∼ Bernoulli(pA)

Hm ←
∫ m+1

0
λāj(j)dj

← Hm + exp(ψ1 × Am)
IF T0 ≥ Hm



Ym+1 ← 0

ELSE

Ym+1 ← 1

T ← m+ (T0̄ −Hm)× exp(−ψ1 × Am)
END IF

ENDFOR m

ENDFOR ID

PRINT

ID, m, Ym+1, Am, Lm, Am−1, Lm−1

F Survival Data Simulation via Permutation Algorithm

This algorithm has been validated for generating survival times conditional on time-dependent

treatment21 and also when time-dependent covariates are present22. This algorithm has been

used in several other studies dealing with generating survival data with time-dependent co-

variates (see for example23–27). The algorithm has the following steps:

1. For each subject i = 1, 2, . . . , n, generate the survival time Ti using a specified distri-

bution.

2. For each subject i, generate the censoring time TCi using a specified distribution.

3. Find the observed survival time T ∗
i = min(Ti, T

C
i ) and the binary censoring indicator

Ci = I(Ti ≥ TCi ) = 1 if censored and 0 otherwise.

4. Repeat steps 1-3 n times and sort survival status tuples (T ∗
i , Ci) with respect to T ∗

i in

increasing order.

5. Generate n covariate matrices Xi = (Aim, Li0, Lim) with dimensions (m × p), where

the m = 0, 1, . . . , K rows correspond to the different time intervals or visits when

measurements are taken and the p columns correspond to the predictor variables,

including treatment (Am), time-fixed and/or time-varying covariates (L0 and/or Lm).

For subject i, Xim, the m-th row of Xi, is a vector of variable values at time m.

6. According to the ordered T ∗
i listed in step 3, begin assigning the survival status tuple

(T ∗
i , Ci) to covariate values from Xim as follows. At time T ∗

i , variable values (treatment



and covariate) are sampled with probabilities pim defined below based on the Cox

model’s partial likelihood:

pim =


exp(ψXim)∑

j∈ri
exp(ψXjm)

, if Ci = 0

1∑
j∈ri

I(j∈ri) , if Ci = 1,

where ψ is the vector of log-HRs for the corresponding variables and I(j ∈ ri) indicates
whether a subject is within a given riskset ri for time T ∗

i .

7. The subject i with the covariate values Xim is assigned the observed time T ∗
i . The

selected Xim is removed from further calculation.

The permutation algorithm is implemented in the PermAlgo package in R28.

G Summary of Selected Cohorts and Exclusion Crite-

ria

The eligibility criteria used for β-IFN treatment are: patients have to be at least 18 years

old, have an Expanded Disability Status Scale (EDSS) score of 6.5 or below (i.e., able to

walk 20 meters without resting with constant bilateral support) and have definite MS with a

relapsing-onset course. 2, 671 patients met the eligibility criteria to receive β-IFN treatment

between July 1995 and December 200429,30.

Web-Table G.1: Characteristics of the selected cohort of patients with
relapsing-onset multiple sclerosis (MS), British Columbia, Canada (1995-
2008).

Baseline Ever-β-IFN Never-β-IFN
characteristics exposed exposed

Number 868 829
Women, n (%) 660 (76.0) 637 (76.8)
Disease duration, average (SD) 5.8 ( 6.6 ) 8.3 ( 8.5 )
Age, average (SD) 38.1 ( 9.2 ) 41.3 ( 10.0 )
EDSS score, median (range) 2.0 ( 0-6.5 ) 2.0 ( 0-6.5 )
Relapse rate / year†, median (IQR) 0.5 ( 0-1.2 ) 0.5 ( 0-1.0 )

† Over the 2 years prior to baseline.



Of these, patients who were exposed to a non-β-IFN immunomodulatory drug, a cytotoxic

immunosuppressant for MS (n = 172), or an MS clinical trial (n = 21) prior to baseline were

excluded from the analysis. If the exposure occurred after baseline, data were censored at

the start of the exposure to the non-β-IFN treatment. Further exclusion criteria included

unknown MS onset date (n = 10), insufficient EDSS measurements (n = 436), reaching of the

outcome (n = 218) or the secondary progressive stage before the eligibility date (n = 217).

Some patients met multiple exclusion criteria. As a result, 1, 697 patients were selected. A

summary of their characteristics are reported in Web-Table G.1.

H Additional Simulation Results

H.1 When More Events are Available

Results from the more frequent event condition are presented in the Tables H.1-H.2 (λ0 =

0.10 on a monthly scale).



Web-Table H.1: Comparison of the analytical approaches to adjust for time-dependent
confounding from simulation-I (one time-dependent confounder and time-dependent treat-
ment exposure) of 1, 000 datasets, each containing 2, 500 subjects followed for up to 10 time-
intervals (frequent event case).

Approach Bias SD(ψ̂1) se(ψ̂1) Coverage Probability

TD-Cox§ 0.044 0.067 0.065 0.888
Sequential Cox#, † 0.174 0.098 0.097 0.560
Modified Sequential Cox∗, @ -0.035 0.074 0.073 0.924
MSCM‡ 0.000 0.069 0.068 0.942

TD-Cox, Cox model with time-dependent exposure; MSCM, Marginal structural
Cox model.

§ Includes the time-dependent confounder Lm as a covariate. In the presence of a
time-dependent confounder, the time-dependent Cox model is not appropriate but
the results are retained for comparison purposes.

# Adjusts for L̃m.
† For the stabilized IPCWs, the numerator model adjusts for Am, while the denomi-
nator model adjusts for Am and L̃m via Aalen’s additive regression.

∗ Adjusts for lagged values of Am, the time-dependent confounder L⃗m, and lagged
values of L⃗m. Note that, baseline covariates are not present in this setting.

@ For the stabilized IPCWs, the numerator model adjusts for Am, while the denom-
inator model adjusts for Am, L⃗m and lagged values of L⃗m via Aalen’s additive
regression.

‡ The stabilized IPTW numerator model adjusts for time index and lagged values of
Am, while the denominator model additionally adjusts for current and lagged values
of Lm to predict future treatment status via pooled logistic models.



Web-Table H.2: Comparison of the analytical approaches to adjust for time-dependent
covariate from simulation-II (one baseline covariate, one time-dependent covariate and time-
dependent treatment exposure) of 1, 000 datasets, each containing 2, 500 subjects followed for
up to 10 time-intervals (frequent event case).

Approach Bias SD(ψ̂1) se(ψ̂1) Coverage Probability

TD-Cox§ -0.002 0.059 0.060 0.960
Sequential Cox#, † 0.218 0.063 0.064 0.074
Modified Sequential Cox∗, @ -0.034 0.083 0.083 0.945
MSCM±, ‡ -0.014 0.058 0.060 0.952

TD-Cox, Cox model with time-dependent exposure; MSCM, Marginal structural
Cox model.

§ The baseline covariate L0 and time-dependent covariate Lm are included.
# Adjusts for L0 and L̃m.
† In the stabilized IPCW model, the numerator model adjusts for Am and L0, while
the denominator model adjusts for Am, L0 and L̃m via Aalen’s additive model.

∗ Adjusts for baseline covariates L0, lagged values of Am, the time-dependent con-
founder L⃗m, and lagged values of L⃗m.

@ For the stabilized IPCWs, the numerator model adjusts for Am and baseline variable
L0, while the denominator model adjusts for L0, Am, L⃗m and lagged values of L⃗m
via Aalen’s additive regression.

± Adjusts for only L0.
‡ For the stabilized IPTWs, the numerator model adjusts for the time index, L0

and lagged values of Am, while the denominator model additionally adjusts for
current and lagged values of Lm to predict future treatment status via pooled logistic
models.



I Additional MS Data Analysis: Modified Sequential

Cox Approach

The HRs for the treatment estimated using a the modified sequential Cox approach when

IPCWs are calculated from different approaches are reported in Web-Table I.1. The anal-

yses are adjusted for baseline covariates: sex, EDSS score, age, disease duration and time-

dependent confounder ‘cumulative relapse’ measured at baseline, treatment initiation month

and its lagged value.

Web-Table I.1: Estimated hazard ratio using the modified sequential Cox approach
to estimate the causal effect of β-IFN on time to sustained EDSS 6 for patients with
relapsing-onset multiple sclerosis (MS), British Columbia, Canada (1995-2008), when
IPCWs are calculated using different approaches.

IPCW HR se(ĤR) 95% CI Weights
estimation Average (SD) range

No weights 1.36 0.26 0.93 - 1.99
Aalen’s regression‡ 1.36 0.26 0.93 - 1.99 1.00 ( 0.01 ) 0.92 - 1.24
Aalen’s regression† 1.36 0.26 0.94 - 1.99 1.00 ( 0.02 ) 0.41 - 1.31
Pooled logistic‡ 1.36 0.26 0.93 - 1.99 1.00 ( 0.01 ) 0.36 - 1.51
Pooled logistic† 1.36 0.26 0.93 - 1.99 1.00 ( 0.01 ) 0.95 - 1.15

‡ IPCW estimated from each mini-trial separately.
† IPCW estimated from the aggregated data of all mini-trials.
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